Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[μ -1,4-bis(4,5-dihydro-1,3-oxazol-2yl)benzene- $\kappa^2 N:N'$]di- μ -bromidocadmium]

Maw-Cherng Suen,^a* Chun-Wei Yeh,^b Shui-Chuan Lin^c and Yi-Fen Hsu^b

^aDepartment of Material and Fiber, Nanya Institute of Technology, Chung-Li, Taiwan, ^bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li, Taiwan, and ^cDepartment of Polymer Materials, Vanung University, Jhongli, Taiwan Correspondence e-mail: sun@nanya.edu.tw

Received 6 July 2011; accepted 11 July 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.026; wR factor = 0.067; data-to-parameter ratio = 48.1.

In the title coordination polymer, $[CdBr_2(C_{12}H_{12}N_2O_2)]_n$, the Cd^{II} ion, situated on an inversion centre, is coordinated by four bridging Br atoms and two N atoms from two 1,4-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene (*L*) ligands in a distorted octahedral geometry. The *L* ligand, which also lies across an inversion centre, bridges two Cd^{II} ions, forming layers parallel to (010).

Related literature

For background to coordination polymers with organic ligands, see: Chiang *et al.* (2008); Hsu *et al.* (2009); Kitagawa *et al.* (2004); Yeh *et al.* (2008, 2009). For Cd(II) coordination polymers, see: Suen & Wang (2007*a*,*b*). For related structures, see: Wang *et al.* (2008, 2011).

Br Br Cd Br Cd Br Cd Br Cd Br Cd Br Cd Br Cd

Experimental

Crystal data [CdBr₂(C₁₂H₁₂N₂O₂)]

 $M_r = 488.46$

	•		
metal	-organic	comp	ounds

Triclinic, $P\overline{1}$ a = 4.0595 (2) Å b = 8.1114 (3) Å c = 10.1132 (4) Å $\alpha = 84.503$ (2)° $\beta = 81.963$ (2)° $\gamma = 84.898$ (2)°	$V = 327.26 (2) \text{ Å}^{3}$ Z = 1 Mo K\alpha radiation $\mu = 7.77 \text{ mm}^{-1}$ T = 296 K $0.16 \times 0.06 \times 0.06 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.769, T_{max} = 0.971$	15213 measured reflections 4234 independent reflections 3127 reflections with $I > 2\sigma(I)$ $R_{int} = 0.081$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.067$ S = 0.96 4234 reflections	88 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.99$ e Å ⁻³ $\Delta \rho_{min} = -1.55$ e Å ⁻³
Table 1 Selected bond lengths (Å).	

Cd—N Cd—Br	2.5189 (12) 2.7085 (2)	Cd-Br ⁱ	2.7901 (2)
Symmetry code: (i	(x - 1, y, z)		

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXL97*.

We are grateful to the National Science Council of the Republic of China and the Nanya Institute of Technology for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2448).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chiang, L.-M., Yeh, C.-W., Chan, Z.-K., Wang, K.-M., Chou, Y.-C., Chen, J.-D., Wang, J.-C. & Lai, J. Y. (2008). *Cryst. Growth Des.* 8, 470–477.
- Hsu, Y.-F., Hu, H.-L., Wu, C.-J., Yeh, C.-W., Proserpio, D. M. & Chen, J.-D. (2009). *CrystEngComm*, **11**, 168–176.
- Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334– 2375.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suen, M.-C. & Wang, J.-C. (2007a). J. Coord. Chem. 60, 257–268.
- Suen, M.-C. & Wang, J.-C. (2007b). J. Coord. Chem. 60, 2197-2205.
- Wang, Y.-H., Lee, H.-T. & Suen, M.-C. (2008). Polyhedron, 27, 1177-1184.
- Wang, P.-N., Yeh, C.-W., Tsai, H.-A., Wang, J.-C. & Suen, M.-C. (2011). Acta Cryst. E67, m881.
- Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603.
- Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611-3618.

supplementary materials

Acta Cryst. (2011). E67, m1099 [doi:10.1107/S1600536811027759]

Poly[[μ -1,4-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene- $\kappa^2 N:N'$]di- μ -bromido-cadmium]

M.-C. Suen, C.-W. Yeh, S.-C. Lin and Y.-F. Hsu

Comment

The synthesis of metal coordination polymers has been a subject of intense research due to their interesting structural chemistry and potential applications in gas storage, separation, catalysis, magnetism, luminescence, and drug delivery (Kitagawa *et al.*, 2004). Roles of anions, solvents and ligand conformations in the self-assembly of coordination complexes containing polydentate nitrogen ligands are very interesting (Chiang *et al.*, 2008; Hsu *et al.*, 2009; Yeh *et al.*, 2008, 2009). The Cd(II) complexes containing polydentate ligands showing various types of frameworks are also reported (Suen & Wang, 2007*a*,b). The Ag(I) and Cu(II) complexes containing 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (*L*) ligands have been reported, which show various one- and two-dimensional networks (Wang, Lee *et al.*, 2008; Wang, Yeh *et al.*, 2011).

In the title complex, the Cd^{II} ion is six-coordinated with four Br atoms and two N atoms from two *L* ligands (Fig. 1, Table 1). The Cd···Cd distances separated by the bridging *L* ligands and Br atoms are 10.3574 (4) and 4.0595 (2) Å. The ligand adopts an *anti* conformation in the structure (Fig. 2).

Experimental

An aqueous solution (5.0 ml) of cadmium bromide (1.0 mmol) was layered carefully over a methanolic solution (5.0 ml) of 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (1.0 mmol) in a tube. Colourless crystals were obtained after several weeks. These were washed with methanol and collected in 69.8% yield.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (phenyl) and 0.97 (methylene) Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. A portion of the two-dimensional network in the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x, -y + 1, -z; (iii) x + 1, y, z; (iv) x - 1, y, z; (v) -x, -y + 1, -z + 1.]

Fig. 2. A drawing of the two-dimensional network.

$Poly[[\mu-1,4-bis(4,5-dihydro-1,3-oxazol-2-yl)benzene- \ \kappa^2 N:N']di-\mu-bromido-cadmium]$

Crystal	data
---------	------

$[CdBr_2(C_{12}H_{12}N_2O_2)]$	Z = 1
$M_r = 488.46$	F(000) = 232
Triclinic, <i>P</i> T	$D_{\rm x} = 2.478 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 4.0595 (2) Å	Cell parameters from 7163 reflections
b = 8.1114 (3) Å	$\theta = 3.1 - 41.1^{\circ}$
c = 10.1132 (4) Å	$\mu = 7.77 \text{ mm}^{-1}$
$\alpha = 84.503 \ (2)^{\circ}$	T = 296 K
$\beta = 81.963 \ (2)^{\circ}$	Columnar, colourless
$\gamma = 84.898 \ (2)^{\circ}$	$0.16 \times 0.06 \times 0.06 \text{ mm}$
$V = 327.26 (2) \text{ Å}^3$	

Data collection

Bruker APEXII CCD diffractometer	4234 independent reflections
Radiation source: fine-focus sealed tube	3127 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.081$
ϕ and ω scans	$\theta_{\text{max}} = 41.1^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -7 \rightarrow 6$
$T_{\min} = 0.769, T_{\max} = 0.971$	$k = -14 \rightarrow 14$
15213 measured reflections	$l = -18 \rightarrow 18$
15213 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.026$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.067$	H-atom parameters constrained
<i>S</i> = 0.96	$w = 1/[\sigma^2(F_o^2) + (0.0224P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
4234 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
88 parameters	$\Delta \rho_{max} = 0.99 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -1.55 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd	0.5000	0.0000	0.0000	0.02232 (4)

Ν	0.4635 (3)	-0.21212 (15)	0.19936 (11)	0.0222 (2)
0	0.2887 (3)	-0.39410 (14)	0.37175 (11)	0.0361 (3)
C1	0.5970 (4)	-0.37792 (18)	0.15877 (14)	0.0282 (3)
H1B	0.8389	-0.3851	0.1436	0.034*
H1A	0.5149	-0.4007	0.0773	0.034*
C2	0.4731 (5)	-0.4991 (2)	0.27480 (16)	0.0333 (3)
H2B	0.3300	-0.5751	0.2468	0.040*
H2A	0.6583	-0.5627	0.3115	0.040*
C3	0.3062 (4)	-0.23541 (17)	0.31777 (13)	0.0212 (2)
C4	0.1447 (3)	-0.11180 (17)	0.40873 (12)	0.0200 (2)
C5	0.2347 (4)	0.05114 (18)	0.39301 (13)	0.0227 (2)
H5	0.3917	0.0853	0.3219	0.027*
C6	-0.0891 (4)	-0.16227 (18)	0.51607 (13)	0.0229 (2)
H6	-0.1479	-0.2714	0.5267	0.027*
Br	0.91841 (3)	0.179762 (17)	0.103470 (13)	0.02270 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cd	0.01836 (6)	0.02238 (7)	0.02671 (7)	-0.00089 (5)	-0.00254 (4)	-0.00583 (5)
Ν	0.0272 (5)	0.0202 (5)	0.0181 (5)	-0.0007 (4)	0.0012 (4)	-0.0038 (4)
0	0.0540 (8)	0.0203 (5)	0.0268 (5)	0.0041 (5)	0.0134 (5)	0.0000 (4)
C1	0.0369 (8)	0.0205 (6)	0.0237 (6)	0.0029 (5)	0.0056 (5)	-0.0034 (5)
C2	0.0432 (9)	0.0211 (7)	0.0304 (7)	0.0038 (6)	0.0093 (6)	-0.0029 (6)
C3	0.0253 (6)	0.0189 (6)	0.0187 (5)	-0.0003 (5)	-0.0008 (4)	-0.0026 (4)
C4	0.0234 (6)	0.0216 (6)	0.0149 (5)	0.0007 (5)	-0.0018 (4)	-0.0036 (4)
C5	0.0269 (6)	0.0241 (6)	0.0160 (5)	-0.0025 (5)	0.0020 (4)	-0.0019 (4)
C6	0.0288 (6)	0.0205 (6)	0.0188 (5)	-0.0031 (5)	0.0005 (4)	-0.0032 (4)
Br	0.02070 (7)	0.02520 (7)	0.02242 (7)	-0.00113 (5)	-0.00048 (4)	-0.00718 (5)

Geometric parameters (Å, °)

Cd—N	2.5189 (12)	C2—H2B	0.9700
Cd—Br	2.70850 (16)	C2—H2A	0.9700
Cd—Br ⁱ	2.79006 (16)	C3—C4	1.4739 (17)
N—C3	1.2813 (17)	C4—C5	1.3910 (19)
N—C1	1.4781 (18)	C4—C6	1.3940 (19)
О—СЗ	1.3530 (18)	C5—C6 ⁱⁱ	1.3855 (18)
O—C2	1.4451 (17)	С5—Н5	0.9300
C1—C2	1.516 (2)	C6—C5 ⁱⁱ	1.3855 (18)
C1—H1B	0.9700	С6—Н6	0.9300
C1—H1A	0.9700		
N—Cd—N ⁱⁱⁱ	180.00 (6)	N—C1—H1A	110.7
N—Cd—Br ⁱⁱⁱ	86.94 (3)	C2—C1—H1A	110.7
N ⁱⁱⁱ —Cd—Br ⁱⁱⁱ	93.06 (3)	H1B—C1—H1A	108.8
N—Cd—Br	93.06 (3)	O—C2—C1	103.97 (11)
N ⁱⁱⁱ —Cd—Br	86.94 (3)	O—C2—H2B	111.0

supplementary materials

Br ⁱⁱⁱ —Cd—Br	180.000 (5)	С1—С2—Н2В	111.0
N—Cd—Br ^{iv}	87.67 (3)	O—C2—H2A	111.0
N ⁱⁱⁱ —Cd—Br ^{iv}	92.33 (3)	C1—C2—H2A	111.0
Br ⁱⁱⁱ —Cd—Br ^{iv}	95.159 (5)	H2B—C2—H2A	109.0
Br—Cd—Br ^{iv}	84.841 (5)	N—C3—O	117.42 (12)
N—Cd—Br ⁱ	92.33 (3)	NC3C4	129.11 (13)
N ⁱⁱⁱ —Cd—Br ⁱ	87.67 (3)	O—C3—C4	113.44 (11)
Br ⁱⁱⁱ —Cd—Br ⁱ	84.841 (5)	C5—C4—C6	119.85 (12)
Br—Cd—Br ⁱ	95.159 (5)	C5—C4—C3	121.06 (11)
Br ^{iv} —Cd—Br ⁱ	180.000 (6)	C6—C4—C3	119.00 (12)
C3—N—C1	106.43 (12)	C6 ⁱⁱ —C5—C4	119.60 (12)
C3—N—Cd	140.65 (10)	C6 ⁱⁱ —C5—H5	120.2
C1—N—Cd	110.60 (8)	С4—С5—Н5	120.2
C3—O—C2	106.97 (11)	C5 ⁱⁱ —C6—C4	120.55 (13)
NC1C2	105.15 (11)	C5 ⁱⁱ —C6—H6	119.7
N—C1—H1B	110.7	С4—С6—Н6	119.7
C2—C1—H1B	110.7	Cd—Br—Cd ^v	95.159 (5)
Symmetry codes: (i) $x-1$, y , z ; (ii) $-x$, $-y$	<i>y</i> , - <i>z</i> +1; (iii) - <i>x</i> +1, - <i>y</i> , - <i>z</i> ; ((iv) -x+2, -y, -z; (v) x+1, y, z.	

Fig. 1

